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Electroosmotic Flows in Channel
with Two Symmetric Periodic Arrays
of Square-Sectioned Ribs

Sangmo Kang*, Yong Kweon Suh
Department of Mechanical Engineering, Dong- A University,
Busan 604-714, Korea

The present study has numerically investigated two-dimensional electroosmotic flows in
channel equipped with two symmetric periodic arrays of square—sectioned ribs with one-fifth of
the channel half-width in size. For the simulation, the ionic-species and electric—potential
equations as well as the continuity and momentum ones are solved using the finite volume
method. Instead of assuming the Boltzmann distribution, the Nernst-Plank equation is applied
for the ionic species. Results show that the steady electroosmotic flow and ionic distributions
depend strongly on the EDL length and streamwise periodic length. For a sufficiently large
periodic length, the fluid flows along the wall as in the inviscid flow at a small EDL length
compared with the rib size, whereas it flows with involving two recirculation bubbles around
the rib as in the pressure-driven flow at a large EDL length. At an intermediate EDL length
comparable to the rib size, a very intricate flow pattern is observed around the rib. With
decreasing periodic length, on the other hand, the interaction between two adjacent ribs gets
stronger and thus the flow pattern significantly changes. This study would contribute to further
understanding electroosmotic flows in micro- and nanofluidic devices of complicated geome-
tries.
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1. Introduction

With the advent of micro- and nanofluidic de-
vices, the electrokinetics has drawn increasingly
more attention because of its feasibility and effi-
ciency for controlling microflows in a variety of
applications : for example, lab-on-a-chip, sen-
sors and actuators, and analytical chemistry. A
solid surface in contact with an infinitely large
extent of electrolyte solution inherits a certain
amount of charges on the surface, either by ioni-
zation of a surface group or by ion adsorption,
while the counterions are released into the solu-
tion. It leads to formation of the electric double
layer (EDL) immediately next to the surface, with
a net amount of excess—counterion charges that
electrically counterbalance the surface charges.
The excess counterions in the EDL move by an
externally applied electric field and then drive the
surrounding fluid in the EDL to move with them.
Subsequently, the fluid motion in the EDL drags
the fluid outside of the EDL to also move due to
the fluid viscosity, finally resulting in a bulk fluid
motion. Such an electrokinetic phenomenon is
called the electroosmosis. Here, the characteristic
thickness of the EDL, A, often called the Debye
shielding distance or EDL length, depends on the
ionic concentration in the bulk of the fluid and is
typically at nano scales [see Li (2004) for more
details]. Recently, the electroosmosis has been
investigated by many researchers as a promising
tool in micro- and nanofluidic devices not only
for delivering bulk of the fluid, but also for en-
hancing its mixing efficiency.

Mixing of fluids is an important process in de-
signing micro- or nanofluidic devices in the field
of, particularly, biotechnology such as p-TAS
(micro total analysis systems) or lab-on-a-chip.
However, feasible and efficient mixing cannot be
achieved easily because flows in these devices are
unavoidably laminar due to low Reynolds num-
bers and thus mixing depends solely on the mo-
lecular diffusion (Stroock et al., 2002). To en-

hance the mixing efficiency, therefore, there must
be transverse components of flow that can stretch
and fold bulk of the fluid over the cross section of
the device. There are two general strategies for
generating such transverse flows : passive methods
in which transverse flows result from the interac-
tion of the externally driven flow with the fixed
channel geometry, and active methods in which
transverse flows are generated by oscillatory forc-
ing within the channel (Stone et al., 2004). The
passive mixing utilizes no energy input except the
mechanism used to drive the fluid flow, whereas
the active mixing exerts some form of active con-
trol over the flow field through such means as
moving parts or varying electric fields (Liu et al.,
2000). While the active mixers can produce ex-
cellent mixing, they are often difficult to fabricate,
operate, clean, and integrate into microfluidic sys-
tems. Thus, in many cases, passive mixers have
been more interesting because they are relatively
simple to implement. The present study is mainly
concerned with one of the issues that are closely
related to the passive mixing: electroosmotic flows
in channel equipped with two symmetric periodic
arrays of square-sectioned ribs.

Quite a few numerical studies have been per-
formed on the electroosmotic flow, but mainly in
relatively simple geometries (Patankar and Hu,
1998 ; Qu and Li, 2000; Lin et al., 2002 ; Li,
2004 ; Kwak and Hasselbrink, 2005) . In addition,
most of them investigated electroosmotic flows for
the very small EDL length in comparison with the
channel half-width, assuming that the Boltzmann
distribution was already established for the ionic
species. Therefore, they had to confine themselves
to the nonoverlapped EDL case. By contrast, ex-
ceptions can be found in Lin et al. (2002) and
Kwak and Hasselbrink (2005). They adopted
the Nernst-Plank equation and the full Navier-
Stokes equation without any assumption of the
Boltzmann distribution in the modelling of elec-
troosmotic flow in micro- or nanofluidic devices.
Despite their excellent achievements, their flow
geometries were relatively simple, for example
crossed plane channels for Lin et al. (2002) and a
plane channel for Kwak and Hasselbrink (2005).
Note that the flow geometry is seldom so simple
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in real applications. Therefore, numerical ap-
proaches without any Boltzmann-distribution as-
sumption have to be extended to the electroos-
motic flow of more complicated geometry. It is a
main motivation of the present study.

The objectives of the present study are to nu-
merically investigate two-dimensional electroos-
motic flows in channel equipped with two sym-
metric periodic arrays of square-sectioned ribs.
Such a flow geometry is chosen because transverse
flows can be generated due to the interaction
between the electrically driven flow (electroos-
motic flow) and the arrays of square-sectioned
ribs, which may finally enhance the mixing effi-
ciency. For the numerical study, the ionic-species
and electric-field equations as well as the conti-
nuity and momentum ones are solved using the
finite volume method. Note that, instead of as-
suming the Boltzmann distribution, the Nernst-
Plank equation is applied for the ionic species.
This study would contribute to further under-
standing electroosmotic flows and developing more
feasible passive mixers in micro- and nanofluidic
devices.

2. Numerical Method

Numerical simulations are performed on two-
dimensional incompressible electroosmotic flows
of a dilute two-species electrolyte in channel
which is equipped with two symmetric periodic
arrays of square-sectioned ribs and whose wall is
made of dielectric materials. For the simulations,
it is assumed that the electrolyte solution is sym-
metric, that is the cations and anions have the
same physical and chemical properties. The sche-
matic diagram of the flow geometry and com-
putational domain is shown in Fig. 1. Here, 2 and
L, denote the rib size and streamwise periodic
length, respectively, and they are nondimension-
alized by the channel half-width, H. For the
computational convenience, the Cartesian coor-
dinate system, (x1,x2), is adopted with an original
point at the front bottom corner of a rib.

The appropriate governing equations for the
flow field and ionic distributions are written
(Patankar and Hu, 1998 ; Hu et al., 1999 ; Lin et
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Fig. 1 Schematic diagram of the flow geometry
and computational domain. Note that all the
lengths are nondimensionalized by the chan-
nel half-width

al., 2004 ; Kwak and Hasselbrink, 2005 ; Qian
and Bau, 2005), in a nondimensional form, as
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where x;’s are the Cartesian coordinates and ¢
the time. Here, u;’s are the velocity components,
p the pressure, Cp and Cp the concentrations of
the cations and anions, respectively, and p. the
volumetric electric-charge density. Note that the
total electric potential, @, is decomposed into an
electric potential due to the external electric field,
¢=¢ —x1, and an electric potential due to the
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charge of the EDL, ¢ (Patankar and Hu, 1998).
All the variables in Egs. (1) ~ (8) are nondimen-
sionalized as follows : #,’s are normalized by the
electroosmotic velocity, U,=(c&)/(ov) [e is
the fluid permittivity and &(<0) the EDL zeta
potential], x;’s by the channel half-width, H, ¢
by H?/D (D is the ionic diffusion coefficient),
and @ and ¢ by —EoH [ Ey(<0) is the mean ex-
ternal streamwise electric field], and ¥ by RT/
zF (R is the gas constant and T the absolute
temperature). In addition, p is normalized by
ovUe/H (p is the fluid density and v the fluid
kinematic viscosity), Cp and Cn by Co (C, is the
molar ionic concentration at an electrically neu-
tral state) , and p. by 2FFCy (z is the valence of the
cations or anions and F the Faraday constant).
Note that the electrolyte solution has been already
assumed to be symmetric, i.e. Zp=—2,=2 and
Dp=Dn=D. Equations (1) ~ (8) constitute a com-
plete set of governing differential equations for
predicting the electroosmotic flow and ionic dis-
tributions in channel with two symmetric periodic
arrays of square-sectioned ribs without any as-
sumption of the Boltzmann distribution.

As observed previously, nondimensionalization
of the governing equations involves additional
dimensionless physical parameters as follows:
Pe=(UeoH) /D, Sc=v/D, Q= (—&)/(—EH),
k=AH, & =(—2z2F&)/(RT), where Ais the EDL
length defined as (Li, 2004)

/1:[ 6527‘ }1/2 ()
2F*2°Cy

Here, Pe is the Peclet number, Sc the Schmidt
number, 2 the ratio of the zeta potential to the
external electric-potential difference, « the ratio
of the EDL length to the channel half-width,
and &' the nondimensional zeta potential.

Most dielectric materials obtain electric charges
when they are brought into contact with an aque-
ous solution and various plausible explanations
for such an phenomenon can be found in litera-
ture (Li, 2004). In the present study, we assume
that a certain amount of cations are released
from the surface into the fluid due to ionization
of a surface group, resulting in a negatively
charged surface. That is, the net amounts of elec-

tric charges on the surface and in the fluid are
equal in strength but different in sign, leading
to the following relation (Li, 2004 ; Kwak and
Hasselbrink, 2005):

2(Lp+2h) kG = [l pedA (10)

where Ap is one computational domain to be
explained later. Here, the zeta potential, {, are
estimated to be related, using a simple dimension-
al analysis, to the surface electric-charge density,
0o, as follows : &= (0oA) /€. Note that the relation
(10) has to be satisfied at every time step during
all the numerical simulations.

To solve the governing differential equations
(1) ~(8), appropriate boundary conditions are
necessary. For the computational convenience,
numerical simulations are performed only on the
section of one streamwise period (0<x,<L,)
and the lower half-channel (0<x,<H=1) due
to the geometric and physical periodicity and sym-
metry, respectively. For all the dependent vari-
ables (w1, w2, p, Cp, Cm, ¢ and ¥), therefore,
periodic boundary conditions are applied in the
streamwise direction while no-gradient (or sym-
metric) conditions are applied at the centerline
(xa=H=1). On the other hand, the boundary
conditions at the wall of the rib and channel are
given as follows : no-slip condition (#;=0), no-
flux condition of the cations and anions [0Cp/
0xn=—(&"/ k) Cp and 9Cn/0xn= (&' /&) Cn, where
the subscript, 7, denotes the wall-normal direc-
tion], no-penetration condition of the external
electric field (9¢’/0x»=071), and condition of
a constant surface electric-charge density (9¢/
axn: CO*//{> .

The governing differential equations (1)~ (8)
are integrated in time using a second-order semi-
implicit fractional-step method: a third-order
Runge-Kutta method (RK3) for the convection
and electric body-force terms and a second-order
Crank-Nicolson method for the diffusion terms.
In space, on the other hand, the governing equa-
tions are resolved with a finite-volume approach
on a staggered mesh and all the spatial derivatives
are discretized with the second-order central dif-
ference scheme. For more efficient simulations,
the computational domain is resolved spatially with
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an adoption of the tangential-hyperbolic grid dis-
tribution such that a dense clustering of grid
points is applied near the wall, especially around
the rib, while away from the wall a coarser grid is
used : the spatial resolutions used for L,=1 and
0.4 are respectively M X N=193X193 and 113X
193. Since only the steady state is concerned in
the present study, all the simulations may be start-
ed with arbitrary initial conditions only if the
steady flow fields and ionic distributions are to be
analyzed.

To confirm the spatial and temporal conver-
gence, parametric studies for the steady electroos-
motic flow at k=0.2, Pe=1 and £2=1 in the case
of Lp=1 and %#=0.2 have been performed and
the typical results are presented in Table 1. De-
tails of other flow conditions will be explained in
the next chapter. Here, Ax s is the minimum grid
size in the streamwise and transverse directions
around the rib while A¢ is the time step size. The
table shows that even for the 1.5-time decrease in
the grid size and 2-time decrease in the time-step
size the relative errors are within 0.05%, that is
enough negligible for the present computational
purpose. It indicates that the results obtained with
the chosen parameter values are well converged
with respect to the spatial and temporal resolu-
tions.

The present study is accomplished by present-
ing contours of the cation and anion concentra-
tions and electric potentials, and streamlines in
the steady state at different values of the EDL
length and streamwise periodic length. Particu-
larly, the EDL length is considered for the three

Table 1 Validation of the numerical method : para-
metric studies for the steady electroosmotic
flow at x=0.2 in the case of L,=1. Here,
parenthesized are the relative errors (%)
with respect to the result from M XN=
193193 and A#=0.001. The subscripts, ¢
and w, denote locations at (x, x2) = (0.1, 1)
and (0.1,0.2), respectively

MXN A.X'rw At Uie pr me ww - 'ﬁc

193X193(0.00048]0.0010(0.56386.33190.2842| —1.5335

289 X289(0.00032|0.0005 [0.5638 [6.3313(0.2841 [ —1.5336
(0.00) | (0.01) | (0.04) | (0.01)

cases : one is the nonoverlapped EDL case (¢k=1/
H<K1 or A< & where % is the rib size), another is
the overlapped EDL case (k~1 or A> %), and the
other is the case of equivalent EDL length and
rib size (A~ /). In addition, the periodic length is
considered for the two cases: one is the case of
sufficiently large periodic length leading to as weak
interaction between two adjacent ribs as possible,
and the other is the case of smaller periodic length
leading to stronger interaction.

3. Results

After verifying the numerical method, we have
conducted numerical simulations on the steady
electroosmotic flow in channel equipped with two
symmetric periodic arrays of square-sectioned
ribs when a constant electric field is externally
applied in the streamwise direction. For the com-
putational convenience, we set the rib size to be
one-fifth of the channel half-width, that is 2=
0.2 in a nondimensional form, and consider a sym-
metric unary electrolyte, that is zp=—zp=2z=1.
In addition, the nondimensional zeta potential is
set to be &' =2.35, the Schmidt number Sc=1000,
the Peclet number Pe=1 and the ratio of the zeta
potential to the external electric potential differ-
ence 2=1.

3.1 Ionic distributions and flow field

To scrutinize the ionic distributions and their
corresponding flow field, numerical simulations
are performed on the steady electroosmotic flow
at k=0.2 in the case of L,=1 and their results are
shown in Figs. 2-4. The periodic length, L,=1, is
chosen such that the electroosmotic flow can be
affected only by a single rib by making the in-
teraction between two adjacent ribs as weak as
possible. On the other hand, the EDL length is
comparable to the rib size because the two non-
dimensional parameters, £ and /, are equally set
to be 0.2. In addition, the EDL length is not
enough small that the Boltzmann-distribution as-
sumption is valid (Qu and Li, 2000).

Figure 2 shows contours of the cation and an-
ion concentrations, Cp and Cp, for the same flow
conditions. Note that the cations have an excess of
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2(Lp~+2h) k&* [corresponding to — (L,~+24) 6o
in a dimensional form] over the anions on the
computational domain (one periodic length and
the lower half-channel), as known from Eq. (10).
Results show that the ionic distributions are ob-
viously periodic in the streamwise direction, im-
plying the validation of the boundary-condition
application. As seen in Fig. 2(a), the cations
move toward the wall, particularly the rib, mainly
due to the attractive force with the negatively
charged wall and finally they are clustered around
the rib with the highest concentrations on the two
bottom corners. Looking more closely around the
rib, the concentration of the cations is nearly con-
stant on the top wall, and it drastically increases
with going downward along the two lateral walls.
On the other hand, the anions have the opposite
concentration distribution to the cations because
of the different electric property, as seen in Fig.
2(b). That is, the anions move from the rib to-
ward the centerline mainly due to the repulsive
force from the negatively charged wall. Conse-
quently, the anions have the lowest concentra-
tions on the two bottom corners. As known in
Fig. 2, the concentration of the cations changes
more rapidly than that of the anions across the
EDL around the wall of the rib and channel.
Contours of the electric potentials are shown

05+

(v)

Fig. 2 Contours of the cation and anion concentra-

tions in the steady electroosmotic flow at k=
0.2 in the case of L,=1: (a) Cp (A=1) and
(b) Cm (A=0.04). Here, A denotes constant
contour-level increments

in Fig. 3 for the same flow conditions. At first,
Fig. 3(a) shows contours of the external elec-
tric potential, ¢=¢ —x;. In the bulk of the fluid
away from the rib, the contour lines are fairly
evenly distributed in parallel with the transverse
direction and their distribution is periodic in the
streamwise direction. It indicates that a constant
external electric field, —1 (corresponding to Ky
in a dimensional form), is exerted on the flow
along the channel. Close to the rib, on the other
hand, the contour lines are perpendicular to the
wall of the rib and channel and they are more
densely distributed on the top wall of the rib than
on the two lateral walls. Next, Fig. 3(b) shows
contours of the EDL electric potential, . The
Poisson equation (7) implies that the electric-
potential distribution is closely related to those of
the cations and anions. The volumetric electric-
charge density, 0.=Cp— Cn, close to the rib is
higher than in the bulk of the fluid away from
the rib (see Fig. 2). Therefore, the EDL electric

0.5

0.5

05
(c)
Fig. 3 Contours of the electric potentials in the steady
electroosmotic flow at #=0.2 in the case of
Ly,=1: (a) ¢ (A=0.025), (b) ¥ (A=0.05)
and (c) O=¢+ (/&) ¢ (A=0.05). Here,

A denotes constant contour-level increments
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potential decreases with approaching the rib and
attains the minimum (or maximum negative) val-
ues on the two bottom corners. Finally, Fig. 3(c)
shows contours of the total electric potential ob-
tained through Eq. (5). Close to the wall of the
rib and channel, the distribution of the total
electric potential resembles more that of the EDL
potential, indicating the dominance of the EDL
one. Far away from the wall, on the other hand,
it resembles more that of the external electric po-
tential, indicating the dominance of the external
one.

As shown in Eq. (2), the electroosmotic flow
can be driven through the body force term, — 0. (00/
Ox:) or p.E; where E;=—0®/0x; is the total
electric field, that is through the interaction be-
tween the electric-charge distribution in fluid and
the total electric field. Thus, the electric body force
is exerted in the direction normal to contour lines
of the total electric potential. Here, it is remark-
able to mention in which direction the electric
body force acts. Note that the total electric field is
a sum of the external electric field and the EDL
one, i.e. E;=—0¢/ox:— (2/&") 0¢/dx:. Close to
the rib, the electric body force is exerted toward
the front bottom corner () on the front side of
the rib, while it is toward the back bottom corner
() on the back side. On the top side, the electric
force is exerted downstream and downward ()
because this region is affected comparably by the
external electric field (downstream) and the EDL
one (downward). Away from the rib, on the other
hand, the electric force is exerted downstream and
downward () because of the combined effects
of the external electric field and EDL one. Then,
with going farther away from the wall, the down-
ward electric-force component due to the EDL
electric field diminishes and, thus, the electric
force is more directed right to the downstream.

Figure 4(a) shows streamlines in the steady
electroosmotic flow at £=0.2 in the case of L,=
1. Here, the stream function at the wall is set to
be zero. It is seen that the flow takes a spatially
wavy motion because of the periodic arrays of
ribs. In addition, very thin bubbles are found
around the rib and their appearance is very com-
plicated. To more closely investigate the flow

pattern, enlargements of the flow field around the
rib are shown in Fig. 4(b). The figures indicate
that bubbles with negative values of the stream
function are found on the top and front sides of
the rib, whereas those with positive values are on
the back side. Note that the stream function be-
comes negative when flow separation occurs from
the wall, whereas otherwise it is positive. On the
top side, flow separation occurs and a very thin
recirculation bubble is formed along the wall.
On the front side, a recirculation bubble of re-
versed—‘L’ shape is located along the front-side
wall of the rib and the channel wall, while inside
the ‘L’-shape bubble a very thin and long bubble
is formed along the front-side wall. On the back
side, on the other hand, the flow pattern is much
more complicated. The values of the stream func-
tion are all positive, indicating that flow separa-
tion does not occur on this side. The fluid that

05-

0

Fig. 4 Streamlines in the steady electroosmotic flow
at £=0.2 in the case of L,=1: (a) over the
whole domain and (b) on the top, left-hand
and right-hand sides of the rib. The stream-
function levels are not to scale and their
negative values are dashed. Note that, in (b),
the scales in the x; and x» directions are set
different to comprehend the bubble structure
around the rib
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flows down along the back-side wall takes a big
heaving and dipping motion all through the wall,
leaving two slender vertical bubbles. In addition,
two more slender horizontal bubbles are formed
along the channel wall.

As observed in Eq. (2), the flow-driving force
in the electroosmotic flow is not uniform over
the flow domain because it depends strongly on
the spatial distributions of the ionic species and
thus electric potentials. In that sense, the elec-
troosmotic flow should be basically different from
the conventional pressure-driven flow. To con-
firm the difference, the same numerical simulation
has been performed under an assumption that
the cations and anions are uniformly distributed.
For the simulation, the electric body-force term,
—(Sc/2K2&") 0. (0@/0x:), is replaced with the
mean pressure-gradient term, —dP/dx;=— (Sc/
2128") 0e)<{0@/dx:), in the momentum equation
(2), where <+) is the spatial averaging. Here, the
average volumetric electric-charge density can be
obtained from Eq. (10), that is

2(Lp+2h) Kgo*
Ly—0?

{per= (1)

Fig. 5 Streamlines in the pressure-driven flow in the
case of L,=1: (a) the present numerical study
for k=0.2 and —dP/dx1=(Sc/2K25") {pe)
where () is the spatial averaging, and (b)
Taneda’s experimental work (Van Dyke, 1982).
In (a), the stream-function levels are not to
scale and their negative values are dashed

while the average electric field is set to be {0@/
0x:;»=—0n [corresponding to Eyd: in a dimen-
sional form]. The simulation result is shown in
Fig. 5(a), compared with Taneda’s experimental
work (Van Dyke, 1982) for the pressure-driven
external flow at a very low Reynolds number,
Re=0.02 (defined by the free-stream velocity and
the rib size). It is found that, despite of the dif-
ference in the flow conditions, both the flow fields
are very similar in their appearance. That is, they
involve two big recirculation bubbles with nega-
tive values of the stream function on the front and
back sides of the rib. Therefore, it can be con-
firmed that such complicated electroosmotic-flow
pattern around the rib shown in Fig. 4 comes
from the spatially-varying ionic concentrations
and thus electric potentials.

3.2 Effect of the EDL length

In this section, we discuss how the electroos-
motic flow varies with changing nondimension-
al EDL length, «, in channel equipped with two
symmetric periodic arrays of square-sectioned
ribs. For the study, numerical simulations are per-
formed for two more EDL lengths, ¥=0.05 and 1,
in the case of L,=1 and their results are shown
in Figs. 6 and 7, respectively (see also Figs. 2-4
for comparison with the case of ¥=0.2). Figures
6(a)-(c) show contours of the cation and anion
concentrations and total electric potential in the
steady electroosmotic flow at x=0.05. With the
choice of ¥=0.05, the EDL is four times as thin
as the rib, i.e. ¥/h=0.25, and it is enough thin
compared with the channel half-width (¢k=7/
H=0.05<1) that the Boltzmann-distribution as-
sumption is valid. As expected, the cations are
clustered in a very thin EDL layer around the
wall of the rib and channel mainly due to the
attractive force with the negatively charged wall,
and their concentration variation across the EDL
is very steep compared with the case of x=0.2.
Despite the change of the EDL length, the cations
still have the highest concentrations on the two
bottom corners. On the other hand, the anions are
repelled away from the wall mainly due to the
repulsive force with the negatively charged wall.
Such ionic distributions directly affect that of the
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Fig. 6
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(a)-(c) Contours of the cation and anion con-
centrations and total electric potentials and
(d) streamlines in the steady electroosmotic
flow at k=0.05 in the case of L,=1: (a) Cp
(A=2), (b) Cn (A=0.08) and (c) @ (A=
0.1). In the streamlines, the stream-function
levels are not to scale and their negative
values are dashed. In the contours, on the
other hand, A denotes constant contour-level

increments

Fig. 7

(b

05
(c)

0.5}

(a)-(c) Contours of the cation and anion con-
centrations and total electric potentials and

(d) streamlines in the steady electroosmotic
flow at x=1 in the case of L,=1: (a) C»
(A=0.5), (b) Cm (A=0.02) and (c) @ (A=
0.025). In the streamlines, the stream-func-
tion levels are not to scale and their negative
values are dashed. In the contours, on the
other hand, A denotes constant contour-level
increments
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electric potential [see Fig. 6(c)]. Very close to
the wall, the contour lines are nearly parallel to
the wall because the EDL is very thin and its
effect is very strong. In the bulk of the fluid, to the
contrary, the contour lines are distributed such
that the total electric field is directed right to the
downstream. Figure 6(d) shows streamlines in
the steady electroosmotic flow at #=0.05. It is
seen that neither flow separation occurs nor any
bubble structure is formed, which is totally dif-
ferent from the case of x#=0.2. That is, close to
the wall, the fluid flows along the wall as in the
inviscid flow.

Figures 7(a)-(c) show contours of the cation
and anion concentrations and total electric po-
tential in the steady electroosmotic flow at x=1.
With the choice of k=1, the EDL is five times as
thick as the rib, i.e. ¥/2=5. As well, the EDL
length is equal to the channel half-width, that is
the whole channel is fully EDL-overlapped and
thus the Boltzmann-distribution assumption can-
not be applicable at all. Results show that the
distributions of the ionic concentrations and elec-
tric potential are similar to the cases of thinner
EDL lengths, i.e. #=0.2 and 0.05, but their vari-
ations are much milder over the whole channel. It
means that the EDL effect from the wall extends
far away from the wall, that is to the whole chan-
nel. The corresponding streamlines are shown in
Fig. 7(d). Two big recirculation bubbles with
negative values of the stream function are formed
on the front and back sides of the rib, which is
similar to the case of the conventional pressure-
driven flow (see Fig. 5). Since the flow belongs to
the fully overlapped EDL case, the EDL effect
extends to the whole channel and thus the EDL
electric potential is relatively uniform. Therefore,
the flow resembles more the pressure-driven flow
with increasing EDL length.

3.3 Effect of the periodic length

In this section, we discuss effect of the periodic
length on the steady electroosmotic flow in chan-
nel equipped with two symmetric periodic arrays
of square-sectioned ribs. For the discussion, nu-
merical simulations are performed by shortening
the periodic length to L,=0.4 for the three EDL

lengths, £=0.05, 0.2 and 1. With the choice of
L,=0.4, the interaction between two adjacent
ribs becomes very strong compared with the case
of Ly,=1.

Figure 8 shows streamlines in the steady elec-
troosmotic flow at k=0.05 for L,=0.4 (see also
Fig. 6 for comparison with the case of L,=1). It
is seen that, at a very small EDL length, the basic
characteristic in the flow pattern for L,=0.4 is
similar to that for L,=1, that is the fluid flows
along the wall as in the inviscid flow. Neverthel-
ess, extremely thin bubbles are formed around
the rib due to the stronger interaction between
two adjacent ribs. In addition, in the bulk of the
fluid, the fluid flows downstream less distorted
by the array of ribs because of its more compact
arrangement.

Apparent variation of the flow pattern with the
periodic length can be observed at x=0.2 and 1.
Figures 9 and 10 show streamlines in the steady
electroosmotic flow, respectively, at x=0.2 and 1
for L,=0.4. The figures show that one big re-
circulation bubble with negative values of the
stream function is generated between two adjacent
ribs and attached to the front-side wall of the rib.
It is implied that, with decreasing periodic length,

05F

ol i

0 0.25 0.3

Fig. 8 Streamlines in the steady electroosmotic flow
at £=0.05 in the case of L,=0.4. The stream-
function levels are not to scale and their
negative values are dashed
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the critical EDL length above which such a bub-
ble structure exists also decreases.

Despite such one-big-bubble structure between
two adjacent ribs, the flow pattern changes more
or less according to the EDL length. In the case

05F

0.05 0 2 0.25 0

Fig. 9 Streamlines in the steady electroosmotic flow
at £=0.2 in the case of L,=0.4. The stream-
function levels are not to scale and their
negative values are dashed

02—

N

e i ]
0.2 0.25 0.z

a

Fig. 10 Streamlines in the steady electroosmotic flow at
#=1 in the case of L,=0.4. The stream-
function levels are not to scale and their
negative values are dashed

of k=0.2, on the back side of the rib, the fluid
flows downward and then upward, leading to
‘L’-shape flow pattern with positive values of the
stream function. On the front side, to the contrary,
a very complicated flow pattern with negative
values of the stream function, composed of small
bubbles and reversed-‘L’ shape streamlines, is
formed. In the case of x=1, however, such flow
patterns become appreciably weak. In other words,
with increasing EDL length, the flow pattern re-
sembles more that of the conventional pressure—
driven flow and the big bubble expands its size.

4. Summary

In this study, we have numerically investigated
two-dimensional electroosmotic flows in channel
equipped with two symmetric periodic arrays of
square-sectioned ribs under the external applica-
tion of a constant electric field. Here, the rib
size was set to be one-fifth of the channel half-
width (%2=0.2). Such a flow geometry was chosen
because transverse flows could be generated due
to the interaction between the electroosmotic flow
and square-sectioned ribs, probably enhancing
the mixing efficiency. For the numerical study, the
ionic-species and electric-potential equations as
well as the continuity and momentum ones were
solved using the finite volume method. Instead of
assuming the Boltzmann distribution, the Nernst-
Plank equation was introduced for the ionic
species.

Results showed that the steady electroosmotic
flow and ionic distributions depended strongly on
the EDL length and streamwise periodic length.
The cations moved toward the wall, particularly
the rib, mainly due to the attractive force with the
negatively charged wall and finally they were
clustered around the rib with the highest concen-
trations on the two bottom corners. On the other
hand, the anions moved from the rib toward the
centerline mainly due to the repulsive force from
the negatively charged wall. Close to the rib, the
electric body force was exerted toward the front
bottom corner () on the front side of the rib,
while it was toward the back bottom corner ()
on the back side. With going farther away from
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the rib, to the contrary, the effect of the EDL
electric field became weaker and thus the electric
force was more directed right to the downstream.

For a sufficiently large periodic length (L,=
1), at the EDL length equal to the rib size (x=
&), very thin bubbles were found around the rib
and their appearance was very complicated. On
the front side of the rib, a recirculation bubble
of reversed—‘L’ shape with negative values of the
stream function was located along the front-side
wall of the rib and the channel wall. On the back
side, to the contrary, the fluid that flowed down
along the back-side wall took a big heaving and
dipping motion all through the wall, leaving two
slender vertical bubbles. In addition, two more
slender horizontal bubbles were formed along the
channel wall. At a small EDL length (£=0.05<
) , neither flow separation occurred nor any bub-
ble structure was formed. That is, close to the
wall, the fluid flowed along the wall as in the
inviscid flow. At a large EDL length (¢=1>1),
on the other hand, two big recirculation bubbles
were formed on the front and back sides of the rib
as in the conventional pressure-driven flow.

As the periodic length decreased (L,=1 to
0.4), the flow pattern changed greatly at a rela-
tively large EDL length (#=0.2 or 1): one big
recirculation bubble was generated between two
adjacent ribs and attached to the front-side wall
of the rib. However, at a small EDL length (¢=
0.05), the variation was not so much. In other
words, with decreasing periodic length, the criti-
cal EDL length above which such a bubble struc-
ture existed decreased. This study would contrib-
ute to further understanding electroosmotic flows
and developing more feasible passive mixers in
micro- and nanofluidic devices.
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